Double Cropping Corn and Soybean: Risk or Reward?

Michael Plumblee, Ph.D., CCA

Mississippi State Row Crop Short Course Dec. 10th, 2024

Introduction

- Over the last several decades input prices (fertilizer, pesticides, fuel, equipment costs, land rent, etc.) have increased
 - Many inputs have drastically increased since COVID-19
- Corn and soybean are often grown in rotation; shared equipment; disease and weed benefits
- Several irrigated fields in SC are continuous corn
- How can we increase per acre profitability on the farm year to year?

Improving Total Farm Profit

- Increase Yield
 - Irrigation?
 - Hope and pray for a "Good" year
- Increase Price
- Reduce inputs or input costs
 - Increase efficiency
 - Are we trading yield or quality for this?
- Increase Production per Acre
 - Intercropping
 - Double-Cropping

Double Cropping Corn and Soybean

- Double Cropping is not a "new" concept
- Double cropping in SC often involves soybean following small grains
- Double cropping corn and soybean has been conducted in GA for several years with varying levels of success
- Interest from farmers primarily in coastal plain where corn and soybean crops dominate production
 - Good, productive soils
 - Irrigation
 - Aggressive farmer mentality
- Estimated <5,000 acres planted to this system in 2020
- Estimated 20,000+ acres planted to this system in 2023

Double Cropping Corn and Soybean

Problem/Research Questions

- Can we double-crop corn and soybean in South Carolina? Frost?
- Can we do this profitably?
- What is the last day I can plant soybean and make a crop?
- Should I be concerned with plant parasitic nematodes?
- What maturity group soybean should I plant? Corn hybrid?
- Will the use of N at-plant increase yield or plant height?
- Other factors?

Important Factor – Plant Height

- This system needs plant height for harvestability
 - Varietal?
 - Agronomically influenced?
 - Maturity Group?
- How does yield work into this?

Agronomic Challenges

Agronomic Challenges

Equipment Solutions

Developing BMP's

- Five Independent Trials:
 - **Trial 1:** Determining soybean planting date and maturity group effects when double cropped behind corn
 - **Trial 2:** Evaluation of corn and soybean nematicides in doublecrop scenarios (Counter 20G & AgLogic15G)
 - Trial 3: Evaluation of at-plant nitrogen on ultra-late planted soybean
 - Trials 4 & 5: Evaluation of row spacing on ultra-late planted soybean (30-inch rows vs. 15-inch rows) & Seeding Rate

Evaluating Planting Date and Maturity Group – Trial 1

Soybean Planting Date/MG

- Two corn hybrids
 - 113 and 120 RM
- Two corn planting dates
 - March 15 and April 15
- Harvest at 3 moisture contents
 - 25, 20, and 15.5%

• Followed by 4 soybean maturity groups

• 4, 5, 6, and 7 MG

Evaluating Planting Date and Maturity Group

Treatment

CORN & SOYBEAN AGRONOMY

Treatment

CORN & SOYBEAN AGRONOMY

How to Achieve Appropriate Soybean PD?

- Corn must have a March planting date
 - Heat-driven crop get in early, expect to harvest earlier
- Understand that corn needs to be harvested at high moisture
 - Grain dryer is a must
 - Drying costs need to be realized upfront
 - Commodity price or drying fuel considerations?
 - Our data suggest that corn harvested at 20% moisture or higher
- Hybrid selection in terms of maturity is flexible
 - Plant full season first or select early hybrid for this system
 - Corn yield is the first and foremost decision!

Soybean Yield by Planting Date

Planting Date

Soybean Yield by Maturity Group

Soybean Planting Date

Evaluating Planting Date and Maturity Group - Conclusion

- Soybean planting date is highly dependent on corn planting date and harvest moisture
- Flexibility in hybrid selection across years
- Soybean maturity group did influence grain yield at certain planting dates, where the MG 4 underperformed. Varietal?
- Understanding yield potential and yield loss per day will help gauge when to stop planting ~ August 7-10th
- What about plant height??

Maturity Group Effects on Plant Height

Soybean Plant Height x Maturity Group

Maturity Group Effects

Soybean Height to First Fruit x Maturity Group

Should we be concerned with Nematodes?

Species	Corn	Cotton	Soybean	Peanut
Southern Root-knot	300	100	100	Nonhost
Peanut Root-knot	300	Nonhost	100	50+
Soybean cyst	Nonhost	Nonhost	50	Nonhost
Columbia lance	100	75	50	Nonhost
Lesion	500	100+	150	25+
Stubby root	40+	??	50	50+
Ring	200+	400	200	50+
Sting	4	8	4	8+
Reniform	Nonhost	250	100	Nonhost
Spiral	500	800+	600	200

Nematode – Trial 2

- SRK Nematode is the primary target in this research, however, all species were identified with sampling
- Corn with and without Counter 20G
 - Nematode sampling at plant, V4, and harvest
 - Root sampling at V4
- SRK resistant and susceptible with and without AgLogic 15G
 - Nematode sampling at plant, V4, and harvest
 - Root sampling at V4

Nematode - Results

Corn Grain Yield x Nematicide

Nematode - Results

2024 Southern Root-Knot Nematode Soybean V4 Root Counts by Nematicides in Corn and Soybean, and Soybean Variety

Nematode - Conclusion

- Counter 20G did impact corn grain yield every year with an on-average increase of 14 bu/ac when Counter 20G was used.
- Counter 20G x AgLogic 15G x SRK resistant soybean variety significantly impacted recovery of SRK nematode from soybean roots
- Combination of nematicide and soybean variety did not impact soybean grain yield
 - Variety alone seemed to have biggest impact

At-Plant N, Seeding Rate, and Row Spacing - Summary

- No significant plant height or yield differences with at-plant N (0-90 lbs/ac)
- No significant differences in seeding rate (120-240k seed/ac) however, numerically 150k seed/ac seemed best
- No yield differences in 30 vs 15-inch row spacing
 - Strip-till?
 - Too late to close canopy?

Double Cropping Economics - 2024

Revenue		Corn - Irrigated	Soybean - Irrigated	DC Corn - Irrigated	DC Soybean - Irrigated
	Projected Yield (bu/ac)	210	65	210	30
	Futures Price	\$4.80	\$9.70	\$4.80	\$9.70
	Expected Crop Revenue	\$1,008.00	\$630.50	\$1,008.00	\$291.00
Direct Expense					
	Seed	\$104.00	\$55.00	\$104.00	\$55.00
	Fertilizer	\$393.52	\$134.02	\$393.52	\$0.00
	Crop Protection	\$95.52	\$128.22	\$95.52	\$50.00
	Crop Insurance	\$8.63	\$6.76	\$8.63	\$0.00
	Drying Cost	\$44.73	\$2.77	\$63.00	\$0.00
	Irrigation Energy	\$54.00	\$27.00	\$54.00	\$27.00
	Labor	\$6.08	\$7.15	\$6.08	\$7.15
	Machinery	\$39.45	\$43.43	\$39.45	\$43.43
	Total Direct Expenses	\$745.93	\$408.99	\$764.20	\$187.22
	Total Profit / Acre	\$262.07	\$221.51	\$243.80	\$103.78
				Total DC Profit /	
				Acre	\$3 <mark>47.58</mark>

BMP's

Understandings:

- Time is critical
- Irrigation is recommended
- Residue management can be a challenge
- Corn must be cut at high moisture and dried

BMP's

Lessons Learned:

- Corn needs to be planted early (March)
- Some flexibility with RM of corn hybrid
- Corn harvest likely needs to occur between 28-20% MC
- Economic benefit from using Counter 20G??
- Pick the best soybean variety for yield and plant height regardless of MG – no benefit in MG 4
- Plant as early as possible through August 7-10th
- ~150k seed/ac on 30-inch rows can achieve max yield

BMP's

Lessons Learned:

- What happens if early frost?
 - 2022 we had early frost on Oct 16th
 - Estimated yield loss 10-15% but not total failure
- What happens if we have an active hurricane season?
 - Less irrigation cost
 - In 2023, we had some issues with excessive water
 - In 2024, planting was impacted by Tropical Storm Debbie

Acknowledgements

Questions?

Michael Plumblee 64 Research Road Blackville, SC 29803 mplumbl@clemson.edu 803-269-8922

